Piecewise oblique boundary treatment for the elastic–plastic wave equation on a cartesian grid
نویسندگان
چکیده
منابع مشابه
A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on Irregular Domains
We present a numerical method for solving Poisson’s equation, with variable coefficients and Dirichlet boundary conditions, on two-dimensional regions. The approach uses a finite-volume discretization, which embeds the domain in a regular Cartesian grid. We treat the solution as a cell-centered quantity, even when those centers are outside the domain. Cells that contain a portion of the domain ...
متن کاملA Cartesian Grid Embedded Boundary Methodfor the Heat Equation on Irregular Domains
We present an algorithm for solving the heat equation on irregular time-dependent domains. It is based on the Cartesian grid embedded boundary algorithm of Johansen and Colella (1998, J. Comput. Phys. 147, 60) for discretizing Poisson’s equation, combined with a second-order accurate discretization of the time derivative. This leads to a method that is second-order accurate in space and time. F...
متن کاملA Fourth-order Cartesian Grid Embedded Boundary Method for Poisson’s Equation
In this paper, we present a fourth-order algorithm to solve Poisson’s equation in two and three dimensions. We use a Cartesian grid, embedded boundary method to resolve complex boundaries. We use a weighted least squares algorithm to solve for our stencils. We use convergence tests to demonstrate accuracy and we show the eigenvalues of the operator to demonstrate stability. We compare accuracy ...
متن کاملDiscrete boundary treatment for the shifted wave equation
We present strongly stable finite difference approximations to the quarter space problem (x > 0, t > 0) for the first order in time, second order in space wave equation with a shift term. We consider space-like (pure outflow) and time-like boundaries, with either second or fourth order accuracy. These discrete boundary conditions are a first step for the construction of stable finite difference...
متن کاملBoundary controllability for the quasilinear wave equation
We study the boundary exact controllability for the quasilinear wave equation in the higher-dimensional case. Our main tool is the geometric analysis. We derive the existence of long time solutions near an equilibrium, prove the locally exact controllability around the equilibrium under some checkable geometrical conditions. We then establish the globally exact controllability in such a way tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Mechanics
سال: 2009
ISSN: 0178-7675,1432-0924
DOI: 10.1007/s00466-009-0406-3